heading

Product discontinued. Successor model: NH-U9B

The NH-U9F is the newest version of the NH-U9, which won over 50 awards and recommendations from leading international web sites and magazines. The NH-U9F can be rotated by 90° on all sockets, boasts full compatibility with AMD's new AM2 socket and comes equipped with a Noctua 92mm fan, which has a minimum noise rating of only 7dB(A)*. Thanks to the 4 Dual-Heat-Pipes, 37 aluminium cooling fins with a total surface area of more than 3800cm² and soldered joints for optimal heat-transfer, the Noctua NH-U9F achieves superior cooling performance at minimum noise levels.
NH-U9F
Cooler Specification
Intel Socket LGA 775, AMD K8 (754, 939, 940) & AM2; Intel Xeon on request
Height (without fan)
128 mm
Width (without fan)
95 mm
Depth (without fan)
70 mm
Height (with fan)
128 mm
Width (with fan)
95 mm
Depth (with fan)
95 mm
Weight (without fan)
550 g
Weight (with fan/s)
660 g
Material
Copper (base and heat-pipes), aluminium (cooling fins), soldered joints
Application
Intel all frequencies, AMD all frequencies
Scope of Delivery
  • NH-U9F
  • Noctua 92mm fan
  • Complete mounting hardware
  • Low-Noise Adaptor (L.N.A.) & Ultra-Low-Noise Adaptor (U.L.N.A.)
  • Thermal Paste
  • Anti-Vibration-Strips
Warranty
6 years
FAN Specification
Bearing
Rotational Speed (+/- 10%)
1600 RPM
Rotational Speed with L.N.A. (+/- 10%)
1150 RPM
Rotational Speed with U.L.N.A. (+/- 10%)
850 RPM
Acoustical Noise
18 dB(A)
Voltage Range
5-13 V
MTTF
> 150.000 h
NH-U9F
05.06.2007 // CPU3D.com
test.gif

NH-U9F Review

Testing the NH-U9F was fun and easy, its not as combersome as large 120mm based CPU coolers, it was easier to fit that its bigger brother NH-U12F, and space awareness around the processor area is not too much of a concern. Another plus factor is that the heatsink can be installed facing east-to-west (standard) or if space is restricted it can be fitted facing north-to-south. Cooling performance was great, heat transfer from the CPU core into the heatsink was as efficient as its bigger brother NH-U12F, probably due to the fact that the same design principle in the copper base and four heatpipe was used.
Test verdict: "A great cooling performance from a standard sized heatsink, compatible with all new socket fittings. Super silent fans and size are a big positive" (Kwok Yao Chim, CPU3D.com)
29.12.2006 // DragonSteelMods.com
test.gif

NH-U9F Review

We can plainly see that the Noctua blows away the Intel stock cooler, and beats the Thermalright SI-128, only the Coolermaster HyperTX has better temps than the Noctua, and they are very close especially at idle. The main difference is that the Noctua is virtually silent, and I didn't even use one of the included adapters, I hooked it straight to the motherboard fan header. The Noctua NH-U9F is the quietest CPU cooler I have ever owned or reviewed, Noctua knows silence and performance should go hand in hand. I can easily trade the silence of the Noctua for the extra one degree of coolness that the HyperTX gives while being louder and bigger.
Test verdict: "[T]he Noctua NH-U9F is an extremely good CPU cooler, with excellent cooling performance and and a very low noise level. The Noctua NH-U9F is something that is made with care, high quality and performance in mind and I can easily recommend it to anyone looking to upgrade there CPU cooling system to something much better and much quieter than the stock cooler." (Kristofer Brozio, DragonSteelMods.com)
26.12.2006 // Gamezoom.net
test.gif

NH-U9F Review

Obwohl unser Testmuster 'nur' einen 92 mm Lüfter zur Kühlung besitzt, kommt er fast trotzdem an die exzellenten Werte des NH-U12F heran.
Test verdict: "Alle Vorzüge des 'großen Bruders' hat auch der 'kleine' NH-U9F Kühler übernommen. Kühlleistung, Lautstärke und Verarbeitungsqualität sind ausgezeichnet und suchen seines Gleichen." (Christoph Miklos, Gamezoom.net)
17.12.2006 // Technic3d.com
test.gif

NH-U9F Review

Der verwendete Lüfter war selbst bei voller Drehzahl und geschlossenem Gehäuse nur mit absoluter Konzentration minimal wahrnehmbar. Bei Verwendung der beiden Adapterkabel zur Drehzahlreduzierung war kein Geräusch des Lüfters mehr hörbar.
Test verdict: "Mit dem NF-U9F hat die Firma Noctua eindrucksvoll bewiesen, dass das Ziel geräuschoptimierte Premium-Komponenten anzubieten keine Floskel ist. Der Noctua ist selbst bei Höchstdrehzahl kaum wahrnehmbar und kühlt dabei recht ordentlich." (Michael Nürnberger, Technic3d.com)
13.12.2006 // HotCases.de
test.gif

NH-U9F Review

Von Lautstärke kann man bei diesem Kühler eigentlich nicht sprechen. Ohne den Adapter für mich schon nicht mehr herauszuhören bei geschlossenen Case. Für echte Silent Freaks wahrscheinlich schon. Für User für die extrem Silent ein Muss ist legt Noctua noch 2 Adapter bei, den Low-Noise Adapter (L.N.A.) & Ultra-Low-Noise Adapter (U.L.N.A.). Damit wird auch die letzte Lautstärke eliminiert. Selbst der Passiv Betrieb ist, wie man am Temperatur Test sieht, möglich - somit ist der Kühler 100% geräuschlos.
Test verdict: "Noctua hat mit dem NH-U9F ein wahres Meisterwerk von Kühler abgeliefert." (David Kortmann, HotCases.de)
13.12.2006 // HardwareCrew.com
test.gif

NH-U9F Review

Sehr überzeugt hat uns die quasi nicht vorhandene Lautstärke des Kühlers. Leider fehlen uns Meßinstrumente, die empfindlich genug sind, derart niedrige Schallpegel zu erfaßen. So müßen wir uns auf eine Beschreibung des subjektiven Wahrnehmens beschränken. Mit dem "Ultra Low Noise Adaptor" muss man schon mit dem Ohr direkt an den laufenden Lüfter gehen, um ein Geräusch wahrzunehmen. Aber auch selbst ohne Drehzahlbegrenzung wird der Kühler bei geschloßenem Gehäuse unhörbar. Die Angaben von Noctua - 7db(A) bis 11db(A) bei Verwendung der beiden Widerstands-Kabel - sprechen bereits eine Sprache für sich und sollten selbst eingefleischte Passiv-Fanatiker dazu bewegen, ihrer Hardware etwas mehr Kühlung zu gönnen.
Test verdict: "Hier hat Noctua wirklich gute Arbeit geleistet. Dieser Kühler platziert sich auf Anhieb ganz vorne in die Reihen der Silent-Produkte." (Fabian Erdmann, HardwareCrew.com)

Installation Manual (PDF)

Information Sheet (PDF)

FAQs

How much space is required around the CPU socket?

Is the high weight dangerous for the CPU or socket?

Is it possible to mount fans with a greater height than 25mm?

Is it possible to run two fans at a time?

Should the fan be mounted sucking away from the heat-sink or blowing onto the heat-sink?

On which side of the heat-sink should the fan be installed?

How much space is required around the CPU socket?

Is it possible to cool my CPU without a fan (passive) using Noctua coolers?

How to install the fan using the supplied steel clips?

Which mainboards are compatible with the NH-U9F?

Can I use Noctua fans on my fan controller?

Can I run Noctua 3-pin fans on 4-pin PWM connectors and use my mainboard’s automatic fan controller?

My fan doesn’t spin when I start up the PC - is it faulty?

My unlocked Intel CPU is running too hot although my heatsink supports the specified TDP, what's the problem?

How should I clean my Noctua cooler?

What Thermal Design Power (TDP) is this cooler recommended for and how much Watt (W) of heat can it dissipate?

My case supports CPU coolers of up to XXXmm height, which model should I choose?

I have difficulties installing the cooler, can you help?

Can I keep using the backplate / mounting system of my previous Noctua cooler for my new one?

How much torque should be applied when tightening the screws of a Noctua CPU cooler?

How can I determine if the motherboard’s UEFI BIOS is overclocking my processor by default and deactivate this automatic overclocking?

Which Noctua CPU coolers are compatible with Intel LGA2066?

Can I install a Noctua cooler in my system from Acer, Dell, HP or Lenovo?

Which Noctua CPU coolers are compatible with AMD AM4 (Ryzen)?

Can I upgrade my existing Noctua cooler to socket TR4 or SP3?

Which Noctua fan or CPU cooler should I buy? How to choose the right model?

How much space is required around the CPU socket?

The following illustration shows you exactly how much space is required around the socket:

NH-U Space

The cooling fins of the NH-U9 are put high enough to evade problems with mainboard capacitors and other parts:

NH-U Height

NH-U Height

Is the high weight dangerous for the CPU or socket?

No. Noctua coolers possess an extremely reliable SecuFirm™ mounting system. Thanks to the screw connection with the backplate on the rear side of the motherboard, the exceedance of the weight recommendations by Intel and AMD common among high-end coolers is completely unobjectionable.

Is it possible to mount fans with a greater height than 25mm?

Yes. The fan mounting clips grip to the screw holes in the lower edge of the fan frame and hence work with all fans regardless of their height. However, problems with the mounting of the fan can occur due to other parts within the case or fans with special frame designs, where the clips can't grip to the screw holes in the lower edge of the frame.

NH-U fan mounting

Is it possible to run two fans at a time?

Yes. Using the 4 supplied fan clips, you can mount two 120mm fans on the NH-U12(F/P) and two 92mm fans on the NH-U9(F/B).

Should the fan be mounted sucking away from the heat-sink or blowing onto the heat-sink?

Please install the fan blowing onto the heat-sink.

NH-U Airflow

If you're using two fans, please install them so that one blows onto the heat-sink and the other sucks the air away from the other side.

On which side of the heat-sink should the fan be installed?

Please install the fan so that the hot air can be disposed as good as possible either through the rear case fan (Airflow Option 1) or through the power supply (Airflow Option 2).

NH-U Airflow

How much space is required around the CPU socket?

The following illustration shows you exactly how much space is required around the socket: NH-U Space

The cooling fins of the NH-U12 are put high enough to evade problems with mainboard capacitors and other parts:

NH-U Height

NH-U Height

Is it possible to cool my CPU without a fan (passive) using Noctua coolers?

Noctua coolers weren't originally designed for passive operation although the cooling performance is sufficient in many cases. Unfortunately, it is impossible for us to indicate whether a certain CPU can or cannot be cooled without a fan, as this depends on various factors such as case temperature, case ventilation or the orientation of the socket. Generally, we recommend using a fan in the first instance and then lowering RPM while constantly monitoring the temperature.

How to install the fan using the supplied steel clips?

First hook the clip into the notch of the heatsink:

Vibration Compensators Installation

Then hook the endings of the clips into the mounting holes of the fan:



Vibration Compensators Installation

Which mainboards are compatible with the NH-U9F?

Please consult our mainboard compatibility list for information about compatible mainboards.

Can I use Noctua fans on my fan controller?

Our fans are compatible with the vast majority of fan controllers on the market. However, there is a compatibility issue with a few models such as the Zalman ZM-MFC2 and Bitfenix Recon, which apply Pulse Width Modulation (PWM) on the 12V line and use an unfavourable PWM carrier frequency. This can create an oscillation when used with certain fans, which will result in the fan speeding up and down. We therefore recommend not using the Zalman ZM-MFC2 or Bitfenix Recon with our fans.

Can I run Noctua 3-pin fans on 4-pin PWM connectors and use my mainboard’s automatic fan controller?

You can simply connect our fan's 3-pin connector to the 4-pin PWM sockets of today's mainboards so that the fourth pin that transmits the PWM signal is left blank (due to the shape of the connector, there's no danger of reversing polarity). Some mainboards (e.g. current Gigabyte models) are capable of controlling fans not only via PWM, but also by adjusting the supplied voltage. In some cases, this may require you to change BIOS options like "Fan Control Mode" from "PWM" to "Voltage" or "Analog". Please consult your mainboard's manual in this regard. However, some mainboards use an "auto" setting by default that automatically chooses PWM or voltage based regulation according to the connected fan. Automatically controlling the fan speed may not possible on mainboards that pulse the power rather than lowering the fan voltage.

PWM PWM

My fan doesn’t spin when I start up the PC - is it faulty?

If you've connected the fan directly (or using the supplied Low-Noise or Ultra-Low-Noise-Adaptors) to your mainboard, it's possible that the mainboard's automatic fan controller doesn't provide the required starting voltage due to the low CPU temperature. Please verify whether the fan starts spinning at higher CPU temperatures, remove any Low-Noise or Ultra-Low-Noise Adaptors, deactivate your mainboard's automatic fan controller in the BIOS or connect the fan directly to the power supply using the supplied 3:4-pin adaptor.

My unlocked Intel CPU is running too hot although my heatsink supports the specified TDP, what's the problem?

Intel's unlocked CPUs (K, X and C suffix) can dissipate more heat than indicated by the TDP specification if
  1. the TDP limits are extended or disabled in the motherboards' BIOS.
  2. the motherboard applies automatic overclocking by default, e.g. by raising the supply voltage of the CPU and using higher Turbo-Mode multipliers.
  3. some software creates untypical loads, e.g. Prime95 with AVX2 support and a) and/or b) apply.

This can lead to temperature issues, especially when using smaller coolers or compact cases.

The actual power draw of the processor can be monitored with software provided by the motherboard vendor or with 3rd party tools like HWInfo or HWMonitor.

If you encounter temperature issues (>90°C) and notice a higher than specified power draw, please ensure that no automatic overclocking is applied and limit the TDP to the specified value by choosing appropriate BIOS settings.

For Kaby Lake CPUs, it may also help to lower the CPU clock speed for applications that heavily use the AVX instruction set, which can lead to higher loads and power draw. This option is usually referred to as “AVX offset” and makes it possible to lower the multiplier specifically for AVX based applications without reducing performance when using other instruction sets. Depending on the quality of the CPU and the programs being used, a reduction of 2-3 steps usually gives very good results.

Please contact your motherboard vendor for details if you have trouble finding the appropriate settings in the BIOS.

All our TDP recommendations are based on thorough testing with the default values specified by Intel using popular applications such as Asus Realbench and prime95. Please note, however, that prime95 creates a particularly high load that goes beyond typical application scenarios and this leads to elevated temperatures. We thus recommend using other programs such as Realbench for checking the stability and temperatures of the CPU in realistic scenarios.

How should I clean my Noctua cooler?

Dust: Fans and heatsinks inside computer cases tend to accumulate dust over longer periods of usage. In order to maintain maximum performance, please clean your fan and heatsink regularly. For cleaning, please first remove the fan from the heatsink and clean it using a duster, slightly moist tissue or canned air. Please be careful not to use too much force in order to prevent any damage to the fan. Please do not use a vacuum cleaner as this may apply excessive force to the fan and do not put the fan under running water as water residues inside the motor may lead to short circuits. Please also note that the fan is not designed to be taken apart by the user. Removing the impeller from the frame will break the sealing of the bearing and results in a loss of warranty. Before reinstalling the fan, clean the heatsink itself with a duster or vacuum cleaner. Do not use water to clean the cooler. Finally put the fan back on and connect it to your motherboard fan header or fan controller.
Thermal paste residues: Whenever you take off the heatsink from the CPU, we recommend to clean the CPU as well as the base of the cooler before re-applying thermal paste and re-installing the cooler. You can either just wipe the base and the CPU clean with a dry, lint-free tissue or, for more thorough cleaning, use a lint-free tissue moistened with either a mild solution of washing-up liquid or isopropyl alcohol. Do not put the cooler or CPU under running water. Note that both the base of the heatsink and the CPU should be dry, free from residues of thermal compound and free from grease before re-applying thermal paste and re-installing the cooler.

What Thermal Design Power (TDP) is this cooler recommended for and how much Watt (W) of heat can it dissipate?

Please refer to our TDP guide for information on maximum recommended TDP and heat dissipation.

My case supports CPU coolers of up to XXXmm height, which model should I choose?

Please refer to our TDP guide in order to select the cooler that offers the best cooling performance at a given height.

I have difficulties installing the cooler, can you help?

Please refer to the installation manual and our video installation guides for detailed instructions on how to install the cooler.

Can I keep using the backplate / mounting system of my previous Noctua cooler for my new one?

Most Noctua SecuFirm™ mounting parts are cross-compatible, so if you’re replacing one Noctua cooler with another, it is usually possible to keep the original backplate and/or mounting system in place in order to re-use it for the new cooler. If you had your previous Noctua cooler installed on an Intel LGA115x (LGA1156, LGA1155, LGA1151, LGA1150), LGA2011 (LGA2011-0, LGA2011-3) or LGA1366 system and replace it with an NH-U14S, NH-U12S or NH-U9S, you only need to replace the original mounting bars with the NM-IMB3 ones supplied with the new cooler. For all other models, you can keep the entire mounting system in place on the aforementioned Intel sockets. On AMD AM2, AM2+, AM3, AM3+, FM1, FM2, FM2+, you only need to replace the original mounting bars with the ones supplied with the new cooler.

How much torque should be applied when tightening the screws of a Noctua CPU cooler?

All screws should be tightened gently until they stop without using excessive force. Please do not exceed the following values for maximum tightening torque:
Screw typeMax. torque
NM-SSC1 screws for fixing the fastening brackets to the base of the heatsink0.5 Nm
NM-ITS1 thumb screws for fixing Intel mounting bars0.5 Nm
NM-ALS1 screws for fixing AMD mounting bars0.6 Nm
Spring-loaded screws for fixing the heatsink to the mounting bars0.6 Nm

How can I determine if the motherboard’s UEFI BIOS is overclocking my processor by default and deactivate this automatic overclocking?

Most motherboard vendors allow their overclocking-enabled products (e.g. those with Intels X- or Z-series chipsets) to run the processor at increased clock speeds by default, without requiring any user action at all. Since TDP (Thermal Design Power) limits are usually also disabled by default, this leads to the CPU exceeding the rated TDP to a varying degree, depending on the used applications and their workloads. Due to the increased heat output of the CPU, you may see higher CPU temperatures than expected.

In order to find out if your motherboard is overclocking your processor by default, please enter the UEFI BIOS and select the “advanced” or “overclocking” menu. There you should be able to find options such as “MultiCore Enhancement” (options: enabled/disabled), “CPU Ratio Apply Mode” (options: all/per core) or similar. To disable the automatic overclocking, adjust the settings either to “disabled” or “per core” and make sure that the individual multipliers match the original specifications.

In doubt, please contact your motherboard vendor for detailed instructions on how to disable this feature.

Which Noctua CPU coolers are compatible with Intel LGA2066?

Due to the heatsink mounting mechanism being identical on LGA2011 and LGA2066, Noctua’s SecuFirm2™ mounting systems for LGA2011 also support Intel’s upcoming ‘Basin Falls’ X299 HEDT (High End Desktop) platform for ‘Skylake-X’ and ‘Kaby Lake-X’ processors. Most current Noctua coolers already include SecuFirm2™ mounting systems for LGA2011 and can thus be used on LGA2066 motherboards without any upgrades or modifications.

The following models include a mounting-kit for socket LGA2011/2066 and are thus compatible out of the box:

NH-C14S
NH-D14 SE2011
NH-D15
NH-D15S
NH-D9L
NH-L12
NH-L9x65
NH-U12S
NH-U12DX i4
NH-U14S
NH-U9DX i4
NH-U9S

The following models can be made compatible with the LGA2011/LGA2066 sockets free of charge using the NM-I2011 upgrade-kit:

NH-C12P
NH-C12P SE14
NH-C14
NH-D14
NH-D15 SE-AM4
NH-U12S SE-AM4
NH-L9x65 SE-AM4
NH-U12
NH-U12F
NH-U12P
NH-U12P SE1366
NH-U12P SE2
NH-U9
NH-U9B
NH-U9B SE2
NH-U9F

The following models can be made compatible with the LGA2011/LGA2066 sockets using the NM-I2011 upgrade-kit but are not eligible for Noctua‘s free mounting offer, so users have to purchase the kit at local resellers:

NH-U12DO (Note that the A3 version is not compatible!)
NH-U12DX
NH-U12DX 1366
NH-U9DX 1366
NH-U9DO (Note that the A3 version is not compatible!)

The following models are not compatible with the LGA2011/LGA2066 sockets and can not be upgraded:

NH-L9a
NH-L9i
NH-U12DO A3
NH-U9DO A3

Can I install a Noctua cooler in my system from Acer, Dell, HP or Lenovo?

Systems from Acer, Apple, Dell, HP, Lenovo or other major brands often use motherboards which differ slightly from the specifications issued by Intel and AMD. While those changes are usually subtle, they can lead to compatibility issues with coolers that where built to comply with these specifications.

Even in case the cooler is mechanically compatible and can be installed, other issues can occur, e.g. proprietary fan connectors, BIOS errors due to a low fan speed, shutdowns, etc. Some of these problems can be avoided with some technical knowledge, but especially BIOS related issues can often not be resolved.

Due to the large number of possible issues that cannot be resolved with different mounting parts alone, Noctua does not officially support systems from Acer, Apple, Dell, HP, Lenovo or other major brands.

Which Noctua CPU coolers are compatible with AMD AM4 (Ryzen)?

The following models include a mounting-kit for socket AM4 and are thus compatible out of the box:

NH-D15 SE-AM4
NH-U12S SE-AM4
NH-L9x65 SE-AM4

The following models can be made compatible with the AM4 socket free of charge using the NM-AM4 upgrade-kit:

NH-C12P
NH-C12P SE14
NH-C14
NH-C14S
NH-D14
NH-D14 SE2011
NH-D15
NH-D15S
NH-D9L
NH-L12
NH-L9x65
NH-U12
NH-U12F
NH-U12P
NH-U12P SE1366
NH-U12P SE2
NH-U9
NH-U9B
NH-U9B SE2
NH-U9F

The following models can be made compatible with the AM4 socket free of charge using the NM-AM4-UxS upgrade-kit:

NH-U14S
NH-U12S
NH-U9S

The following models can be made compatible with the AM4 socket free of charge using the NM-AM4-L9aL9i upgrade-kit:

NH-L9a
NH-L9i

The following models can be made compatible with the AM4 socket using the NM-AM4 upgrade-kit but are not eligible for Noctua‘s free mounting offer, so users have to purchase the kit at local resellers:

NH-U12DO (Note that the A3 version is not compatible!)
NH-U12DX
NH-U12DX 1366
NH-U12DX i4
NH-U9DX i4
NH-U9DX 1366
NH-U9DO (Note that the A3 version is not compatible!)

The following models are not compatible with the AM4 socket and can not be upgraded:

NH-U12DO A3
NH-U9 DO A3

Can I upgrade my existing Noctua cooler to socket TR4 or SP3?

Unfortunately, it is not possible to upgrade existing Noctua heatsinks to support the AMD TR4 and SP3 sockets for Ryzen Threadripper (X399) and Epyc CPUs. TR4/SP3 CPUs have much bigger heatspreaders (as compared to e.g. LGA2066 or AM4 processors) and the contact surfaces of standard Noctua heatsinks would cover only about half of these heatspreaders, which would result in insufficient cooling performance. On top of that, the heatpipes of bigger cooler models like the NH-D15 or NH-D15S would completely block the RAM slots on many TR4/SP3 motherboards. For this reason, Noctua has introduced the new NH-U14S TR4-SP3, NH-U12S TR4-SP3 and NH-U9 TR4-SP3 cooler models that feature bigger contact surfaces and have been tailored to fit TR4 and SP3 systems. Please choose these models for AMD Ryzen Threadripper and Epyc systems.

Which Noctua fan or CPU cooler should I buy? How to choose the right model?

Not sure which Noctua product to buy? Our detailed buying guides for fans and CPU coolers help you to choose the model that works best for you.

Do you have a question concerning one of our products? Please use this form to pose a question!