heading

Successor to the award-winning NH-L12, the NH-L12S is a compact low-profile CPU cooler that combines excellent compatibility, surprising efficiency and remarkable flexibility. Thanks to its NF-A12x15 PWM, slim 120mm fan, the NH-L12S provides even better quiet cooling performance than the previous model with its 92mm fan. At the same time, the NH-L12S is highly versatile: with the fan installed on top of the fins, the cooler is compatible with RAM modules of up to 48mm in height. With the fan installed underneath the fins, the total height of the cooler is only 70mm, making it suitable for use in many HTPC and Small Form Factor cases. Topped off with the trusted, pro-grade SecuFirm2™ multi-socket mounting system, Noctua’s proven NT-H1 thermal compound and a full 6-year manufacturer’s warranty, the NH-L12S is a premium-quality low-profile solution for the highest demands.

The NH-L12S is a low-profile quiet cooler designed for use in Small Form Factor cases and HTPC environments. While it provides first-rate performance in its class, it is not suitable for overclocking and should be used with care on CPUs with more than 95W TDP (Thermal Design Power). Please consult our CPU compatibility list and TDP guidelines to find out whether the NH-L12S is recommended for your CPU.
Details
Based on the award-winning NH-L12

Based on the award-winning NH-L12

Having received more than 200 awards and recommendations from leading international hardware websites and magazines, the NH-L12 has become an established reference for low-profile 120mm top-flow coolers. Equipped with the new NF-A12x15 fan, the new S-version provides more flexibility and improved performance in low-profile mode.
Low-profile mode

Low-profile mode

Run with the NF-A12x15 fan installed underneath the fin stack, the NH-L12S stands only 70mm tall. The fan can be installed blowing upwards or blowing downwards in order to match the airflow direction inside the case.
High-clearance mode

High-clearance mode

Run with the NF-A12x15 fan installed on top, the NH-L12S provides extended clearance underneath the fin stack. This way, it is fully compatible with chipset coolers and RAM modules with heat-spreaders of up to 48mm in height (vs. 35mm in low-profile mode).
NF-A12x15 slim 120mm premium fan

NF-A12x15 slim 120mm premium fan

Featuring sophisticated aerodynamic optimisations such as Flow Acceleration Channels, the NF-A12x15 is a premium-grade slim 120mm fan. Its outstanding efficiency allows the NH-L12S to provide even better performance than the previous model with its 92mm fan.
120x25mm fan support

120x25mm fan support

The fan clips supplied with the NH-L12S work not only with the slim NF-A12x15 fan but also with 25mm thick 120mm fans. Users who have extra room inside their cases can thus boost the cooler’s performance by using a standard 120x25mm fan on top (increases total height to 95mm).
SecuFirm2™ mounting system

SecuFirm2™ mounting system

Noctua's SecuFirm2™ mounting systems have become synonymous with quality, safety and ease of use. Supporting Intel LGA115x (LGA1150, LGA1151, LGA1155, LGA1156), LGA2011 (LGA2011-0 & LGA2011-3), LGA2066 and AMD (AM2, AM2+, AM3, AM3+, AM4, FM1, FM2, FM2+), the SecuFirm2™ mounting included with the NH-L12S guarantees perfect contact pressure and maximum convenience on all current sockets.
Compatibility with past and future sockets

Compatibility with past and future sockets

Complying with the open SecuFirm™ standard, the cooler can be made compatible with the older LGA1366 and LGA775 sockets using the optional NM-I3 mounting kit, which is provided by Noctua free of charge. If technically possible, Noctua will also provide upgrade kits for future sockets.
NT-H1 thermal compound

NT-H1 thermal compound

Noctua's much-acclaimed NT-H1 is a pro-grade TIM solution that provides minimum thermal resistance, excellent ease of use and outstanding reliability. Chosen again and again by overclockers and enthusiast users worldwide, it has established itself as a benchmark for premium-quality thermal compounds.
6-year manufacturer’s warranty

6-year manufacturer’s warranty

Noctua products are renowned for their impeccable quality and outstanding longevity. Like all Noctua fans, the supplied NF-A12x15 features an MTTF rating of more than 150,000 hours and the entire NH-L12S package comes with a full 6-year manufacturer’s warranty.
NH-L12S
General
Notes and warnings
The NH-L12S is a low-profile quiet cooler designed for use in Small Form Factor cases and HTPC environments. While it provides first-rate performance in its class, it is not suitable for overclocking and should be used with care on CPUs with more than 95W TDP (Thermal Design Power). Please consult our CPU compatibility list and TDP guidelines to find out whether the NH-L12S is recommended for your CPU.
Cooler Specification
Intel LGA2066, LGA2011-0 & LGA2011-3 (Square ILM), LGA1156, LGA1155, LGA1151, LGA1150 & AMD AM2, AM2+, AM3, AM3+, AM4, FM1, FM2, FM2+ (backplate required)
Height (without fan)
70 mm
Width (without fan)
128 mm
Depth (without fan)
146 mm
Height (with fan)
70 mm
Width (with fan)
128 mm
Depth (with fan)
146 mm
Weight (without fan)
390 g
Weight (with fan/s)
520 g
Material
Copper (base and heat-pipes), aluminium (cooling fins), soldered joints & nickel plating
Max. TDP
see TDP guide
Fan compatibility
120x120x15 & 120x120x25
Scope of delivery
  • 1x NF-A12x15 PWM premium fan
  • Low-Noise Adaptor (L.N.A.)
  • NT-H1 high-grade thermal compound
  • SecuFirm2™ mounting kit
  • Noctua metal case-badge
Warranty
6 Years
FAN Specification
Bearing
Max. Rotational Speed (+/- 10%)
1850 RPM
Max. Rotational Speed with L.N.A. (+/- 10%)
1400 RPM
Min. Rotational Speed (PWM, +/-20%)
450 RPM
Max. Acoustical Noise
23,9 dB(A)
Max. Acoustical Noise with L.N.A.
16,8 dB(A)
Input Power
1,56 W
Voltage Range
12 V
MTTF
> 150.000 h
NH-L12S
SecuFirm2™ Intel LGA115x installation
SecuFirm2™ Intel LGA2011 installation
SecuFirm2™ AMD AM4 installation
Video Reviews
The following video reviews have not been created by Noctua. Responsibility for the information and views expressed in the videos lies entirely with the authors.
language
language
language
language
language
22.05.2018 // ComputerBase.de
test.gif

NH-L12S Review

In dieser Gegenüberstellung zeigt der Noctua NH-L12S einen merklichen Abstand zu den anderen Top-Blow-Vertretern. Bereits im Low-Profile-Modus mit unter dem Kühlkörper montiertem Lüfter sorgt er für eine kühlere CPU bei geringerem Lärmpegel. Wird der Ventilator auf dem Kühlkörper befestigt, so kommt er sogar dem Tower-Kühler Cryorig H7 nahe. Ein Aufschließen zu noch größeren Luft- oder gar Wasserkühlern kann von dem kleinen Kühler schlicht nicht erwartet werden. Die Physik lässt sich nicht austricksen: Hohe Kühlleistung bei vertretbarem Lärmpegel kann nur durch eine große Fläche erreicht werden. Zusammenfassend lässt sich für den NH-L12S sagen, dass er für seine Größenkategorie beeindruckend stark agiert.
Test verdict: "Noctua hat mit dem NH-L12S einen potenten Prozessorkühler für Mini-ITX-Systeme im Angebot. Er überzeugt mit makelloser Verarbeitung, einem sehr laufruhigen Ventilator und einer – gemessen an der Bauhöhe – sehr guten Kühlleistung. Die Ausstattung sowie das Montagesystem überzeugen ebenfalls." (Thomas Böhm, ComputerBase.de)
09.11.2017 // modding.fr
test.gif

NH-L12S Review

La qualité de fabrication tout autant que la finition sont une priorité chez Noctua, ce qui permet à la marque de garantir ses produits sur 6 ans et le NH-L12S ne déroge pas à la règle. Le bundle est toujours aussi bien fourni avec notamment la seringue de pâte thermique NT-H1, le tournevis cruciforme et un adaptateur LNA qui va limiter la vitesse de rotation maximale à 1400 tr/min au lieu des 1850 tr/min du NF-A12x15. Sans oublier une compatibilité à l’ensemble des Sockets dont le dernier en date avec le Socket AM4. Bien que le texte soit en anglais, la notice de montage est très claire et il est fort simple d’installer le NH-L12S sur la carte mère. Une simplicité qui perdure depuis un bon moment chez Noctua et quand cela rime avec l’efficacité pourquoi changer de processus. Nous pouvons sans problème monter le ventirad avec la ventilateur en place sous le plateau du radiateur. La présence du NF-A12x15 favorise le faible niveau sonore du NH-L12S. Ce n’est qu’en le poussant au maximum qu’il se fera entendre, mais cela reste discret voire même cela se fond dans le bruit ambiant du boitier. Du coté des performances de refroidissement, les résultats sont tout à fait convenables ne laissant que deux petits degrés face à son homologue au format tour qu’est le NH-U12S. Ce qui est fort appréciable c’est que même à faible vitesse, le ventirad ne décroche pas. Certes dès que le processeur est overclocké, il est un peu moins performant mais continue à faire son job dans de bonnes conditions. Mais comme Noctua l’a spécifié sur son site, ce n’est pas son terrain de prédilection.
Test verdict: "70 mm : tel est le principal argument du Noctua NH-L12S. Avec une telle hauteur, il pourra se glisser dans une très grande majorité des boîtiers HTPC ou mini boîtiers SFF, dont notamment certains où le bloc d’alimentation est positionné juste au-dessus du Socket." (Bertrand Curras, modding.fr)
02.11.2017 // Vortez.net
test.gif

NH-L12S Review

Taking everything into consideration, we’ve been impressed beyond belief with the Noctua NH-L12S, by all means, the heatsink should not have handled a 130W CPU, one of the most power-hungry CPUs of recent years, at that. The acoustics took a bit of a hit when fully stressed, but this situation is completely artificial and shows an extreme “worst case scenario.” It’s not really representative of what the cooler is designed to do, so we can’t be too critical. Regarding its compact size, the CPU cooler should fit within most small-form-factor machines making this ideal for HTPCs and small gaming desktops. Speaking of which, if your PC features a tempered glass or Perspex side panel, you may not find the brown fan to be all that appealing. Noctua’s reputation of producing class-leading cooling equipment has yet again made an appearance, with the NH-L12S going above and beyond what was expected of it and holding its own. In anything other than stress tests and constant, intensive workloads, the heatsink would be capable of removing that heat.
Test verdict: "If you require a small, compact cooler from a reputable, well-known manufacturer, with performance to boot, the Noctua NH-L12S will not disappoint. Guaranteed." (Matthew Hodgson, Vortez.net)
30.10.2017 // Hardwareluxx.de
test.gif

NH-L12S Review

Noctua selbst ist bei der Charakterisierung des NH-L12S eher zurückhaltend. Der Kühler wird speziell für SFF- und HTPC-Gehäuse und Prozessoren mit maximal 95 Watt TDP sowie den Betrieb mit Standardtakt empfohlen. Und natürlich bietet sich der flache Top-Blow-Kühler in erster Linie für solche Einsatzzwecke an. Doch gerade mit Blick auf die Kühlleistung kann er durchaus überraschen. Weil Noctua die beiden Lüfter des Vorgängers durch einen einzelnen, aber besonders schmalen 120-mm-Lüfter ersetzt, ist der NH-L12S bemerkenswert vielseitig. Je nach Bedarf kann er ober- oder unterhalb der Kühlrippen montiert werden. So bleibt etwas mehr Platz für Speicher. Der Serienlüfter überzeugt mit einem breiten Drehzahlbereich und dem flüsterleisen Betrieb im unteren Drehzahlbereich. Selbst bei Maximaldrehzahl bleibt die Lautstärke aber noch in einem relativ vertretbaren Rahmen. Schon mit dem flachen Serienlüfter kühlt der NH-L12S ganz respektabel und besser als manches ähnlich aufgebaute Konkurrenzmodell. Die Kontrollmessungen mit unserem Noctua-Referenzlüfter zeigen aber, dass die Kühlleistung durch Lüfter normaler Bauhöhe sogar noch gesteigert werden kann. Insgesamt hat der Top-Blow-Kühler kein Problem damit, den Core i7-4790K auf Standardtakt zu kühlen - und das auch mit moderater Drehzahl und geringer Lautstärke.
Test verdict: "Wer einen platzsparenden und hochwertigen Top-Blow-Kühler mit vergleichsweise guter Kühlleistung sucht, der ist beim Noctua NH-L12S genau richtig. Weil wir zudem kaum Kritikpunkte haben, verdient er sich auch unseren Excellent-Hardware-Award." (Philipp Moosdorf, Hardwareluxx.de)
26.04.2018 // Modders-Inc.com
test.gif

NH-L12S Review

Moving over to the NH-L12S, we see a 7C reduction in the idle temperature, and a whopping 13C cooler under load, topping out at just 58C. The more dramatic difference here was the fan speed… at idle is sat at just 300rpm, without the ups and downs observed on the Wraith. The Noctua also only had to spin at 900rpm to keep our 2400G at 58C under load. Overclocking the 2400G to 3.95GHz @ 1.40v, we see the Wraith’s idle temperature shoot up to 60C, with the fan spinning at 1150rpm. Even at idle, the fan was audible from across the room, and certainly not something I’d want to listen to in my living room. Under load, it managed to keep the temps acceptable at 74C, but spinning at its max of 1850rpm to hold that. The NH-L12S again impresses for both thermals and noise. Idle temps matched stock speeds at 36C, and full load went from 58 to 64C, at only 1050rpm. Again, from idle to full load, there was no noticeable noise increase sitting right next to the case.
Test verdict: "If you are looking for near-silent operation, and a happier marriage, I would definitely recommend the NH-L12S for you." (Jeff Soleim, Modders-Inc.com)
03.02.2018 // TheLab.gr
test.gif

NH-L12S Review

Η κατασκευάστρια, με την NH L12S, επιχειρεί να απαντήσει σε ένα πολύ συγκεκριμένο και δύσκολο πρόβλημα: Πώς, με το ελάχιστο δυνατό ύψος, θα παρέχει ικανοποιητική ψύξη, τόσο, σε ένα επεξεργαστή μέσης ισχύος , όσο και στα περιμετρικά του socket εξαρτήματα. Πρώτο βήμα στη λύση είναι ο νέος ανεμιστήρας των 120mm, ο οποίος παρά το μόλις 15mm πάχος του, αποδεικνύεται αυτό που ακριβώς χρειάζονται για να αποβάλουν τη σχεδιασμένη θερμική ισχύ, τα περιορισμένα σε μόλις 20mm ύψος πτερύγια. Δεύτερο βήμα, τα ίδια τα heat pipes, τα οποία, τόσο με την καλή εκμετάλλευση της επιφάνειας του ψυκτικού σώματος της ψύκτρας, όσο και με την εντυπωσιακά χαμηλή θερμοκρασία ενεργοποίησής τους (η ψύκτρα ήδη από τους ~23 oC αρχίζει να λειτουργεί! ), δίνουν στην ψύκτρα ένα εξαιρετικό συνδυασμό μεγέθους και θερμικού αποτελέσματος! Σε αυτό το τεχνικό υπόβαθρο προστίθεται ένα εξαιρετικό σύστημα στήριξης και η γνωστή κορυφαία ποιότητα κατασκευής και ο ευτυχής κάτοχος έχει μια ψύκτρα που χωρά άνετα στο -ακόμα και μικρό- HTPC / PC του, αλλά δεν μένει εκεί, καθώς οι μεγάλες διαφορές βρίσκονται στις αισθητά χαμηλότερες θερμοκρασίες και κυρίως στον πολύ χαμηλότερο θόρυβο! Εκείνος όμως που πραγματικά θα βρει στην Noctua NH L12S την ιδανική λύση, είναι ο απαιτητικός χρήστης που θέλει το μικρό-μεσαίο σύστημά του, να είναι αθόρυβο στην πράξη και όχι στα "χαρτιά"! Αυτός, εκμεταλλευόμενος τον εξαιρετικό ανεμιστήρα θα έχει το dead silent που επιθυμεί, χωρίς να υπονομεύει το σύστημά του με αυξημένες θερμοκρασίες!
Test verdict: "Αν έχετε ένα HTPC, ή ένα μέσης ισχύος PC και ψάχνετε για νέα αθόρυβη και αποτελεσματική ψύκτρα, εξετάστε τη πρόταση της Noctua, κατά πάσα πιθανότητα η αναζήτησή σας ολοκληρώνεται στην NH L12S !" (Stelios Petousakis, TheLab.gr)
22.01.2018 // HWLegend.com
test.gif

NH-L12S Review

Il Noctua NH-L9a AM4 ha centrato in pieno lo scopo per il quale è stato progettato, ovvero quello di garantire un'efficiente dissipazione nei sistemi compatti come server, workstation e HTPC estremamente compatti. Ci troviamo di fronte ad un dissipatore ad aria di fascia alta dal costo di circa 40€. Pro: Eccellente qualità costruttiva e materiali; Design semplice ed estremamente compatto per la massima compatibilità; Ottima ventola in dotazione (NF-A9x14 PWM); Massima silenziosità; Buone prestazioni (certificazione per l’utilizzo in abbinamento a CPU con TDP massimo di 65W); Bundle completo; Generosa base di contatto in rame nichelato; Tecnologie proprietarie di altissimo livello; 6 ani di garanzia; Facilità d'installazione grazie alla variante custom del sistema di montaggio proprietario SecuFirm2 (esclusivamente su piattaforma AMD AM4). Contro: Nulla da segnalare. --- Il Noctua NH-L12S è nientemeno che una versione revisionata del pluripremiato NH-L12, da tempo sul mercato. Al pari del predecessore anche questo nuovo modello sfrutta un design “Type-L” con heatpipes appositamente lavorate e sagomate in maniera da ricreare una forma ad “U” orizzontale, aspetto che lo rende estremamente compatto ed idoneo all’utilizzo anche all’interno di sistemi dal fattore di forma ridotto, come ad esempio gli HTPC, senza per questo rinunciare ad ottime performance in termini di dissipazione del calore (il produttore ne certifica l’uso in abbinamento a microprocessori con TDP massimo pari a 95W). A differenza del più piccolo L9a AM4 viene garantita la piena compatibilità con tutte le più diffuse piattaforme Intel (LGA-115x e LGA-20xx) e AMD (AMx e FMx), comprendendo tutto il necessario per procedere all’installazione. Il prezzo di listino si attesta sui 50€ IVA compresa, risultando interessante vista la sua qualità e le sue più che soddisfacenti prestazioni. Pro: Eccellente qualità costruttiva e materiali; Design compatto (basato sul pluripremiato NH-L12) per la massima compatibilità; Compatibilità garantita con le più diffuse piattaforme Intel (LGA-115x/LGA-20xx) e AMD (AMx/FMx); Ottima ventola in dotazione (NF-A12x15 PWM); Massima silenziosità; Buone prestazioni (certificazione per l’utilizzo in abbinamento a CPU con TDP massimo di 95W); Bundle completo; Generosa base di contatto in rame nichelato; Tecnologie proprietarie di altissimo livello; 6 ani di garanzia; Facilità d'installazione grazie al sistema di montaggio proprietario SecuFirm2. Contro: Nulla da segnalare.
Test verdict: "Noctua ci ha abituati a prodotti contraddistinti da un rapporto tra qualità e prestazioni senza eguali, indiscutibilmente ai vertici del settore. Non fanno ovviamente eccezione le ultime soluzioni di raffreddamento ad aria a basso profilo recentemente presentate e osservate nel corso di questo articolo, espressamente pensate per l’utilizzo all’interno di sistemi di dimensioni estremamente compatte, nelle quali l’ingombro della soluzione di raffreddamento ricopre un ruolo di fondamentale importanza, al pari delle performance dissipanti e della rumorosità." (Antonio Delli Santi, hwlegend.com)
16.01.2018 // DDWorld.cz
test.gif

NH-L12S Review

NOCTUA L9A AM4 představuje maximální kompaktnost. Není sice výkonově a hlučností lepší než BOX Wraith SPIRE chladič, který dnes AMD používá, ale je ještě menší, a hlavně 2x nižší, což se může někomu hodit. I když i v malých skříních je obvykle místa dost i na těch 85mm, co má stále poměrně nízký Wraith Spire. L9a-AM4 je v podstatě extrémní řešení, kde jde o co nejmenší rozměry při solidním výkonu i nízké hlučnosti a maximálně kvalitním zpracování. Za to prostě platíte. NOCTUA L12S pak představuje velmi výkonné a velmi kompaktní řešení, kde když můžete, tak s ventilátorem zespodu a 70mm na výšku je skvělým chladičem do ITX sestav. Samozřejmě při špičkovém zpracování a nízké hlučnosti. Cena pak není vůbec špatná a celkově je to jeden z nejzajímavějších klasických nízko-profilových chladičů na trhu.
Test verdict: "Cena pak není vůbec špatná a celkově je to jeden z nejzajímavějších klasických nízko-profilových chladičů na trhu. Ocenění tedy zasloužené." (Jan Stach, DDWorld.cz)
28.11.2017 // 59hardware.net
test.gif

NH-L12S Review

Dans notre test nous avons utilisé un processeur avec un TDP dans les limites hautes préconisées par Noctua, il s'en sort très bien, nous avons même été en mesure de pousser notre processeur en overclocking et dans ce cas nous sommes bien hors des limites fixées par Noctua. la position du ventilateur n'a que peu de conséquences sur l'efficacité du ventirad. La discrétion est de mise sauf peut être en usage extrême, nous ne le critiquerons pas la dessus car ce n'est pas sa destination. Noctua NH L12SLe montage est simple et très détaillé, la compatibilité est assurée sur les sockets du moment, il n'y a pas d'incompatibilité notoire sauf évidemment les barrettes mémoire, deux montages du ventilateur sont donc possibles.
Test verdict: "Le Noctua NH-L12S est un ventirad de très bon niveau, il a été conçu à la base pour dissiper du mieux possible avec un niveau sonore réduit et un encombrement minimum pour être installé dans un mini-boîtier, pari réussi." (Philippe Vautier, 59hardware.net)
17.11.2017 // PureOverclock.com
test.gif

NH-L12S Review

I have to say that I was pleasantly surprised with the performance of both these coolers. Even though the NH-L9a-AM4 was unable to tame a 3.7 GHz overclock, I did not expect it to be able to hold it at all. The fact that it didn’t immediately throttle – it took over three minutes – was pretty epic. The NH-L12S did fare a lot better, and was able to keep the chip cool in both the stock and OC circumstances. Both coolers represent Noctua at their finest. I’ve never known a fan or cooler from Noctua to be underwhelming in terms of performance or their overall design. As we all know, their color scheme is one which you’ll either love or you’ll hate, but I do value them as a company for sticking to their roots and letting the performance speak for itself. Anyhow, both coolers are perfectly capable of styling up your rig whilst making minimal noise. Both the NH-L12S and NH-L9a-AM4 remained next to whisper quiet throughout the testing that I put them through, even under 100% load.
Test verdict: "As always, Noctua offers an excellent option for cooling, especially in the SFF market." (Brendan van Varik, PureOverclock.com)

NA-FC1

  • Compact, highly flexible controller for 4-pin PWM fans
NH-L12S

NA-SEC1

  • 4-Pin Extension Cables
NH-L12S

NM-I3 Mounting-Kit

  • The NM-I3 SecuFirm2™ Mounting-Kit makes Noctua CPU coolers compatible with Intel's LGA775 & LGA1366 sockets.
NH-L12S

Installation Manual (PDF)

Information Sheet (PDF)

FAQs

Is it possible to use the cooler with vertical graphic cards?

How big is the NH-L12S and how much clearance does it provide?

My Noctua PWM fan starts to spin when the PC boots but then stops, what is wrong?

My Noctua PWM fan runs at a much higher minimum speed than advertised, what is wrong?

Can I upgrade my existing Noctua cooler to socket TR4 or SP3?

How should I clean my Noctua cooler?

Which sockets are supported or can be supported using upgrade kits?

What Thermal Design Power (TDP) is this cooler recommended for and how much Watt (W) of heat can it dissipate?

Can I install a Noctua cooler in my system from Acer, Dell, HP or Lenovo?

I'm experiencing fan speed issues with my motherboard from Supermicro, what can I do?

My case supports CPU coolers of up to XXXmm height, which model should I choose?

I have difficulties installing the cooler, can you help?

How much torque should be applied when tightening the screws of a Noctua CPU cooler?

Which Noctua fan or CPU cooler should I buy? How to choose the right model?

How can I determine if the motherboard’s UEFI BIOS is overclocking my processor by default and deactivate this automatic overclocking?

I’ve used all the NT-H1 thermal compound that came with the cooler, can you send me more?

I get a CPU fan error using my Noctua PWM fan, is it faulty?

How to remove the base protection cover?

Does the mounting-system support LGA2011 based Xeon CPUs?

Why is the cooler’s contact surface slightly convex?

Is the cooler compatible with LGA775 and LGA1366?

Is it a problem that the CPU heatspreader is not covered completely by the heatsinkbase on LGA2011-3?

Why doesn't the supplied backplate fit my LGA2066 / LGA2011 motherboard?

Can I keep using the backplate / mounting system of my previous Noctua cooler for my new one?

Which Noctua CPU coolers are compatible with AMD AM4 (Ryzen)?

My unlocked Intel CPU is running too hot although my heatsink supports the specified TDP, what's the problem?

Which Noctua CPU coolers are compatible with Intel LGA2066?

How much RAM clearance does the NH-L12S provide?

Why doesn't the base of Noctua coolers have a polished, mirror like finish?

How can I check whether my case is wide/high enough for the cooler?

In which orientation should top-flow coolers (NH-C series, NH-L12) be installed?

Is it possible to use the cooler with vertical graphic cards?

Depending on the chassis, card and motherboard being used, installing PCIe cards in a vertical position using riser cards may cause compatibility issues with CPU coolers. Whether there will be a problem or not depends on the exact position of the card (which is determined by the PC case and/or optional vertical GPU holder bracket), the width of the card as well as the position of the CPU socket on the motherboard. In order to verify that there is sufficient space for the cooler, please measure the distance between the centre of the CPU socket and the top of the PCI card in order to make sure that the cooler fits.

How big is the NH-L12S and how much clearance does it provide?

Please refer to the following drawing for the exact measurements and clearance:

NH-L12S dimensions

My Noctua PWM fan starts to spin when the PC boots but then stops, what is wrong?

Some mainboards feature 4-pin fan headers that actually don‘t use a PWM signal on Pin 4 to control the fan speed but rather reduce the voltage on Pin 2 (like a standard 3-pin fan header). In this case, it may occur that the mainboard reduces the voltage so much that the fan stops. Please refer to your mainboard manual to check whether or not your mainboard has 4-pin fan headers that control the fan speed by reducing voltage on Pin 2 rather than by changing the PWM duty cycle on Pin 4:

4 pin fan header types

Note that mainboard manufacturers use different terms to indicate that Pin 4 is not being used for PWM control (e.g. “+5V”, “VCC” or “NC”), but if one of these terms is used, you can be sure that the fan header does not support PWM. If Pin 4 is described as “Speed Control” or “PWM” or the like, you can be sure that the fan header supports PWM.

Unfortunately, the description of Pin 2 is not always a clear indication as some manufacturers use terms such as “Fan PWR” or “Power” for both types of fan headers. However, if Pin 2 is described as “Speed Control”, you can also be sure that the fan header does not support PWM based speed control. If Pin 2 is described as “+12V”, this is a clear indication that the fan header supports PWM.

Please also note that in some cases, the descriptions of the pin layouts in the mainboard manuals may not be correct and some models actually allow you to switch the fan headers from voltage control mode to PWM control mode in the BIOS even though the pin descriptions do not indicate PWM support. We thus recommend to look for these options in the BIOS before taking other measures. In case of doubt, please contact your mainboard manufacturer.



To resolve the issue, you can:

  1. Choose a higher fan speed profile in the BIOS (e.g. „normal“ instead of „silent“, etc.) or deactivate automatic fan speed control and use a Low-Noise Adaptor instead.

  2. Use the mainboard‘s fan speed control software or 3rd party tools like Speedfan to regulate the fan speed. Unlike BIOS based fan speed control, the supplied software usually checks whether the fan has stopped and increases voltage accordingly or at least offer more options to set up the fan properly.

  3. If your mainboard features other 4-pin fan headers that use PWM for speed control, you can run multiple fans from these headers using Y-split cables. Make sure not to exceed the specified maximum power draw of the fan headers (usually 10-12W) though.

My Noctua PWM fan runs at a much higher minimum speed than advertised, what is wrong?

The specified minimum speed refers to the speed at 20% PWM duty cycle. There can be several reasons why the fan doesn‘t go as low as indicated:

  1. Many mainboards do not go below 40%, 50% or even 60% PWM duty cycle on case fan headers. Please refer to your mainboard manual to verify whether the fan header actually goes down to 20% duty cycle. If that's not the case, in some cases you can use the fan speed control software supplied with your mainboard to overcome these limitations and reduce the fan speed even further. However, 3rd party tools like SpeedFan offer greater flexibility and better options to work around the limitations imposed by the mainboard vendors.

  2. Some mainboards feature 4-pin fan headers that actually don‘t use a PWM signal on Pin 4 to control the fan speed but rather reduce the voltage on Pin 2 (like a standard 3-pin fan header). As the fan speed at minimum voltage is usually higher than the speed at 20% PWM duty cycle, the fan can not reach as low minimum speeds under voltage control as under PWM control. Please refer to your mainboard manual to check whether or not your mainboard has 4-pin fan headers that control the fan speed by reducing voltage on Pin 2 rather than by changing the PWM duty cycle on Pin 4:

    4 pin fan header types

    Note that mainboard manufacturers use different terms to indicate that Pin 4 is not being used for PWM control (e.g. “+5V”, “VCC” or “NC”), but if one of these terms is used, you can be sure that the fan header does not support PWM. If Pin 4 is described as “Speed Control” or “PWM” or the like, you can be sure that the fan header supports PWM.

    Unfortunately, the description of Pin 2 is not always a clear indication as some manufacturers use terms such as “Fan PWR” or “Power” for both types of fan headers. However, if Pin 2 is described as “Speed Control”, you can also be sure that the fan header does not support PWM based speed control. If Pin 2 is described as “+12V”, this is a clear indication that the fan header supports PWM.

    Please also note that in some cases, the descriptions of the pin layouts in the mainboard manuals may not be correct and some models actually allow you to switch the fan headers from voltage control mode to PWM control mode in the BIOS even though the pin descriptions do not indicate PWM support. We thus recommend to look for these options in the BIOS before taking other measures. In case of doubt, please contact your mainboard manufacturer.


    If your mainboard features other 4-pin fan headers that use PWM for speed control, you can run multiple fans from these headers using Y-split cables. Make sure not to exceed the specified maximum power draw of the fan headers (usually 10-12W) though.

Can I upgrade my existing Noctua cooler to socket TR4 or SP3?

Unfortunately, it is not possible to upgrade existing Noctua heatsinks to support the AMD TR4 and SP3 sockets for Ryzen Threadripper (X399) and Epyc CPUs. TR4/SP3 CPUs have much bigger heatspreaders (as compared to e.g. LGA2066 or AM4 processors) and the contact surfaces of standard Noctua heatsinks would cover only about half of these heatspreaders, which would result in insufficient cooling performance. On top of that, the heatpipes of bigger cooler models like the NH-D15 or NH-D15S would completely block the RAM slots on many TR4/SP3 motherboards. For this reason, Noctua has introduced the new NH-U14S TR4-SP3, NH-U12S TR4-SP3 and NH-U9 TR4-SP3 cooler models that feature bigger contact surfaces and have been tailored to fit TR4 and SP3 systems. Please choose these models for AMD Ryzen Threadripper and Epyc systems.

How should I clean my Noctua cooler?

Dust: Fans and heatsinks inside computer cases tend to accumulate dust over longer periods of usage. In order to maintain maximum performance, please clean your fan and heatsink regularly. For cleaning, please first remove the fan from the heatsink and clean it using a duster, slightly moist tissue or canned air. Please be careful not to use too much force in order to prevent any damage to the fan. Please do not use a vacuum cleaner as this may apply excessive force to the fan and do not put the fan under running water as water residues inside the motor may lead to short circuits. Please also note that the fan is not designed to be taken apart by the user. Removing the impeller from the frame will break the sealing of the bearing and results in a loss of warranty. Before reinstalling the fan, clean the heatsink itself with a duster or vacuum cleaner. Do not use water to clean the cooler. Finally put the fan back on and connect it to your motherboard fan header or fan controller.
Thermal paste residues: Whenever you take off the heatsink from the CPU, we recommend to clean the CPU as well as the base of the cooler before re-applying thermal paste and re-installing the cooler. You can either just wipe the base and the CPU clean with a dry, lint-free tissue or, for more thorough cleaning, use a lint-free tissue moistened with either a mild solution of washing-up liquid or isopropyl alcohol. Do not put the cooler or CPU under running water. Note that both the base of the heatsink and the CPU should be dry, free from residues of thermal compound and free from grease before re-applying thermal paste and re-installing the cooler.

Which sockets are supported or can be supported using upgrade kits?

Please refer to our socket compatibility chart.

What Thermal Design Power (TDP) is this cooler recommended for and how much Watt (W) of heat can it dissipate?

Please refer to our TDP guide for information on maximum recommended TDP and heat dissipation.

Can I install a Noctua cooler in my system from Acer, Dell, HP or Lenovo?

Systems from Acer, Apple, Dell, HP, Lenovo or other major brands often use motherboards which differ slightly from the specifications issued by Intel and AMD. While those changes are usually subtle, they can lead to compatibility issues with coolers that were built to comply with these specifications.

Even in case the cooler is mechanically compatible and can be installed, other issues can occur, e.g. proprietary fan connectors, BIOS errors due to a low fan speed, shutdowns, etc. Some of these problems can be avoided with some technical knowledge, but especially BIOS related issues can often not be resolved.

Due to the large number of possible issues that cannot be resolved with different mounting parts alone, Noctua does not officially support systems from Acer, Apple, Dell, HP, Lenovo or other major brands.

I'm experiencing fan speed issues with my motherboard from Supermicro, what can I do?

The BIOS of many motherboard models from Supermicro expects a certain minimum fan speed (usually 700rpm), which is higher than the minimum fan speed that can be achieved with Noctua's PWM fan models. The BIOS may interpret the low minimum RPM of Noctua fans as a fan error and thus try to run the fan at 100% for a short period before going back to automatic control.. This can result in oscillating fan speeds and fan speed warnings in the BIOS or the fan management console.

Unfortunately there is usually no option to set a lower minimum value that would suit the low minimum speed of Noctua PWM fans.The issue can thus only be resolved by either disabling automatic fan speed control in BIOS, which will cause the fans to run at a constant speed, or by requesting a modified BIOS file from Supermicro, which takes the minimum fan speed of Noctua fans into account (charges might apply).

My case supports CPU coolers of up to XXXmm height, which model should I choose?

Please refer to our TDP guide in order to select the cooler that offers the best cooling performance at a given height.

I have difficulties installing the cooler, can you help?

Please refer to the installation manual and our video installation guides for detailed instructions on how to install the cooler.

How much torque should be applied when tightening the screws of a Noctua CPU cooler?

All screws should be tightened gently until they stop without using excessive force. Please do not exceed the following values for maximum tightening torque:
Screw typeMax. torque
NM-SSC1 screws for fixing the fastening brackets to the base of the heatsink0.5 Nm
NM-ITS1 thumb screws for fixing Intel mounting bars0.5 Nm
NM-ALS1 screws for fixing AMD mounting bars0.6 Nm
Spring-loaded screws for fixing the heatsink to the mounting bars0.6 Nm

Which Noctua fan or CPU cooler should I buy? How to choose the right model?

Not sure which Noctua product to buy? Our detailed buying guides for fans and CPU coolers help you to choose the model that works best for you.

How can I determine if the motherboard’s UEFI BIOS is overclocking my processor by default and deactivate this automatic overclocking?

Most motherboard vendors allow their overclocking-enabled products (e.g. those with Intels X- or Z-series chipsets) to run the processor at increased clock speeds by default, without requiring any user action at all. Since TDP (Thermal Design Power) limits are usually also disabled by default, this leads to the CPU exceeding the rated TDP to a varying degree, depending on the used applications and their workloads. Due to the increased heat output of the CPU, you may see higher CPU temperatures than expected.

In order to find out if your motherboard is overclocking your processor by default, please enter the UEFI BIOS and select the “advanced” or “overclocking” menu. There you should be able to find options such as “MultiCore Enhancement” (options: enabled/disabled), “CPU Ratio Apply Mode” (options: all/per core) or similar. To disable the automatic overclocking, adjust the settings either to “disabled” or “per core” and make sure that the individual multipliers match the original specifications.

In doubt, please contact your motherboard vendor for detailed instructions on how to disable this feature.

I’ve used all the NT-H1 thermal compound that came with the cooler, can you send me more?

Please kindly note that the NT-H1 thermal compound supplied with our coolers is a consumable item so our manufacturer’s warranty does not include providing additional thermal compound. You can purchase NT-H1 from our resellers.

I get a CPU fan error using my Noctua PWM fan, is it faulty?

Noctua PWM fans feature a minimum speed of 300rpm to allow for ultra quiet operation when your CPU is at idle state and doesn’t require higher cooling performance. Some mainboards display error messages such as “CPU fan error” during the booting process when the fan speed is below a certain level. If you get such error messages using your Noctua PWM fan and if such options are available in your BIOS, please either adjust the minimum fan speed monitoring limit to 200rpm or increase the minimum PWM duty cycle. If your BIOS doesn’t offer these options, please disable CPU fan errors. For detailed information on BIOS fan settings, please consult your mainoard’s manual or contact your mainboard manufacturer.

How to remove the base protection cover?

Noctua CPU coolers are shipped with a plastic protection cover at the bottom side of the cooler, which protects the contact surface against scratches and other damage.

The base of Noctua CPU coolers is made from hard-wearing nickel plated copper, so there's nothing to worry about if you buy a Noctua cooler from second hand or if your cooler didn't come with a protection cover. Please proceed with the installation as explained in the manual.

You can simply remove the cover as shown below:

Base Protection Cover

Does the mounting-system support LGA2011 based Xeon CPUs?

There are two different types of ILM (Independent Loading Mechanism) for Intel’s LGA2011 based Xeon CPUs: Square ILM with 80x80mm hole spacing and Narrow ILM with 56x94mm hole spacing. The Square ILM socket is mechanically identical to the LGA2011 socket for Core i7, so the mounting-system is fully compatible, but it is not compatible with Xeon mainboards that use the Narrow ILM:

Xeon Compatibility

Why is the cooler’s contact surface slightly convex?

As the Integrated Heat Spreaders (IHS) of today’s CPUs are slightly concave, the cooler’s contact surface has been deliberately designed to be slightly convex in order to ensure optimal contact. This way, more contact pressure will be applied at the centre of the IHS directly above the DIE, which results in better heat transfer and improved overall performance.

Is the cooler compatible with LGA775 and LGA1366?

The cooler does not support LGA775 and LGA1366 out of the box, but can be made compatible using the NM-I3 mounting kit. Noctua provides the NM-I3 kit free of charge if a proof of purchase (scan, photo or electronic copy of the invoice) of the cooler and an LGA775 or LGA1366 motherboard or CPU are presented. In order to install the cooler using the NM-I3 kit, please first unscrew the center screw of the original one-piece fastening bracket (you can reach through the fin stack using the long screw driver supplied with the cooler) and remove it. Then install the two fastening brackets of the NM-I3 kit as described in the NM-I3 installation manual.

Is it a problem that the CPU heatspreader is not covered completely by the heatsinkbase on LGA2011-3?

No. Depending on the orientation of the cooler, 1-2mm at the outer edge of the heatspreader may not be covered by the heatsink base. As the heat is concentrated at the center of the CPU and the outermost parts are irrelevant for heat-transfer, this is no problem at all.

Why doesn't the supplied backplate fit my LGA2066 / LGA2011 motherboard?

The supplied backplate is for LGA115x only and there is no backplate required for installation on LGA20xx (LGA2066, LGA2011-3, LGA2011-0). Please refer to the installation manual or our installation video for how to install the heatsink on LGA20xx.

Can I keep using the backplate / mounting system of my previous Noctua cooler for my new one?

Most Noctua SecuFirm™ mounting parts are cross-compatible, so if you’re replacing one Noctua cooler with another, it is usually possible to keep the original backplate and/or mounting system in place in order to re-use it for the new cooler. If you had your previous Noctua cooler installed on an Intel LGA115x (LGA1156, LGA1155, LGA1151, LGA1150), LGA2011 (LGA2011-0, LGA2011-3) or LGA1366 system and replace it with an NH-U14S, NH-U12S or NH-U9S, you only need to replace the original mounting bars with the NM-IMB3 ones supplied with the new cooler. For all other models, you can keep the entire mounting system in place on the aforementioned Intel sockets. On AMD AM2, AM2+, AM3, AM3+, FM1, FM2, FM2+, you only need to replace the original mounting bars with the ones supplied with the new cooler.

Which Noctua CPU coolers are compatible with AMD AM4 (Ryzen)?

The following models include a mounting-kit for socket AM4 and are thus compatible out of the box:

NH-D15 SE-AM4
NH-U12S SE-AM4
NH-L12S
NH-L9x65 SE-AM4
NH-L9a-AM4

The following models can be made compatible with the AM4 socket free of charge using the NM-AM4 upgrade-kit:

NH-C12P
NH-C12P SE14
NH-C14
NH-C14S
NH-D14
NH-D14 SE2011
NH-D15
NH-D15S
NH-D9L
NH-L12
NH-L9x65
NH-U12
NH-U12F
NH-U12P
NH-U12P SE1366
NH-U12P SE2
NH-U9
NH-U9B
NH-U9B SE2
NH-U9F

The following models can be made compatible with the AM4 socket free of charge using the NM-AM4-UxS upgrade-kit:

NH-U14S
NH-U12S
NH-U9S

The following models can be made compatible with the AM4 socket free of charge using the NM-AM4-L9aL9i upgrade-kit:

NH-L9a
NH-L9i

The following models can be made compatible with the AM4 socket using the NM-AM4 upgrade-kit but are not eligible for Noctua‘s free mounting offer, so users have to purchase the kit at local resellers:

NH-U12DO (Note that the A3 version is not compatible!)
NH-U12DX
NH-U12DX 1366
NH-U12DX i4
NH-U9DX i4
NH-U9DX 1366
NH-U9DO (Note that the A3 version is not compatible!)

The following models are not compatible with the AM4 socket and can not be upgraded:

NH-U14S TR4-SP3
NH-U12S TR4-SP3
NH-U9 TR4-SP3
NH-U12DO A3
NH-U9 DO A3

My unlocked Intel CPU is running too hot although my heatsink supports the specified TDP, what's the problem?

Intel's unlocked CPUs (K, X and C suffix) can dissipate more heat than indicated by the TDP specification if
  1. the TDP limits are extended or disabled in the motherboards' BIOS.
  2. the motherboard applies automatic overclocking by default, e.g. by raising the supply voltage of the CPU and using higher Turbo-Mode multipliers.
  3. some software creates untypical loads, e.g. Prime95 with AVX2 support and a) and/or b) apply.

This can lead to temperature issues, especially when using smaller coolers or compact cases.

The actual power draw of the processor can be monitored with software provided by the motherboard vendor or with 3rd party tools like HWInfo or HWMonitor.

If you encounter temperature issues (>90°C) and notice a higher than specified power draw, please ensure that no automatic overclocking is applied and limit the TDP to the specified value by choosing appropriate BIOS settings.

For Kaby Lake CPUs, it may also help to lower the CPU clock speed for applications that heavily use the AVX instruction set, which can lead to higher loads and power draw. This option is usually referred to as “AVX offset” and makes it possible to lower the multiplier specifically for AVX based applications without reducing performance when using other instruction sets. Depending on the quality of the CPU and the programs being used, a reduction of 2-3 steps usually gives very good results.

Please contact your motherboard vendor for details if you have trouble finding the appropriate settings in the BIOS.

All our TDP recommendations are based on thorough testing with the default values specified by Intel using popular applications such as Asus Realbench and prime95. Please note, however, that prime95 creates a particularly high load that goes beyond typical application scenarios and this leads to elevated temperatures. We thus recommend using other programs such as Realbench for checking the stability and temperatures of the CPU in realistic scenarios.

Which Noctua CPU coolers are compatible with Intel LGA2066?

Due to the heatsink mounting mechanism being identical on LGA2011 and LGA2066, Noctua’s SecuFirm2™ mounting systems for LGA2011 also support Intel’s upcoming ‘Basin Falls’ X299 HEDT (High End Desktop) platform for ‘Skylake-X’ and ‘Kaby Lake-X’ processors. Most current Noctua coolers already include SecuFirm2™ mounting systems for LGA2011 and can thus be used on LGA2066 motherboards without any upgrades or modifications.

The following models include a mounting-kit for socket LGA2011/2066 and are thus compatible out of the box:

NH-C14S
NH-D14 SE2011
NH-D15
NH-D15S
NH-D9L
NH-L12
NH-L9x65
NH-U12S
NH-U12DX i4
NH-U14S
NH-U9DX i4
NH-U9S

The following models can be made compatible with the LGA2011/LGA2066 sockets free of charge using the NM-I2011 upgrade-kit:

NH-C12P
NH-C12P SE14
NH-C14
NH-D14
NH-D15 SE-AM4
NH-U12S SE-AM4
NH-L9x65 SE-AM4
NH-U12
NH-U12F
NH-U12P
NH-U12P SE1366
NH-U12P SE2
NH-U9
NH-U9B
NH-U9B SE2
NH-U9F

The following models can be made compatible with the LGA2011/LGA2066 sockets using the NM-I2011 upgrade-kit but are not eligible for Noctua‘s free mounting offer, so users have to purchase the kit at local resellers:

NH-U12DO (Note that the A3 version is not compatible!)
NH-U12DX
NH-U12DX 1366
NH-U9DX 1366
NH-U9DO (Note that the A3 version is not compatible!)

The following models are not compatible with the LGA2011/LGA2066 sockets and can not be upgraded:

NH-L9a
NH-L9i
NH-U12DO A3
NH-U9DO A3

How much RAM clearance does the NH-L12S provide?

In high-clearance mode (with the fan installed on top of the fin-stack), the NH-L12S can be used with RAM of up to 48mm including heat-spreaders. In low-profile mode (with the fan installed underneath the fin-stack), the NH-L12S supports standard height memory modules with up to 35mm height.

Why doesn't the base of Noctua coolers have a polished, mirror like finish?

As most of today's PC enthusiasts use high-viscosity thermal compounds, the contact surface of Noctua coolers is optimised for use with this type of pastes. The micro-grooves at the contact surface ensure that high-viscosity thermal compounds are dispersed to a uniform thin layer across the whole contact area and that no air pockets remain between the cooler and the CPU. With a polished, mirror like surface, the risk of uneven dispersion is much higher. As too thick layers of thermal paste and air pockets drastically deteriorate heat transmission, the micro-grooves are is of vital importance to the overall cooling performance of Noctua coolers when used with today's high-viscosity thermal pastes.

How can I check whether my case is wide/high enough for the cooler?

Most case manufacturers provide specifications for maximum CPU cooler height/clearance. Please refer to these specifications in order to verify that the cooler will fit the case. If no specifications are available, please contact the case manufactuer or measure the distance from the motherboard tray to the side panel (tower cases) or top panel (desktop cases). If this distance is bigger than the height of the cooler + 15mm (mainboard spacers + mainboard + CPU), the height/width of your case should be sufficient.

In which orientation should top-flow coolers (NH-C series, NH-L12) be installed?

When using top-flow coolers in a tower-style case, we strongly recommend installing the cooler with the heatpipes in horizontal position or with the bends of the heatpipes pointing downwards. Please avoid installing the cooler with the bends pointing upwards as this may result in reduced cooling performance. In desktop cases, the cooler can be used in any orientation.

Orientation

Do you have a question concerning one of our products? Please use this form to pose a question!